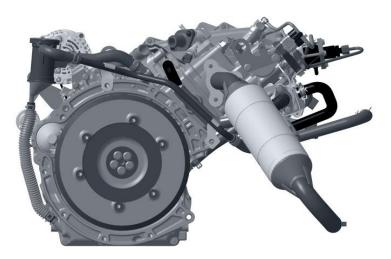


Detailed Product Catalogue: Twin Cylinder, Duel Fuel, Turbo Charged, Diesel Engine Setup with Open ECU System


Table of Contents Page Number Twin Cylinder CRDI Engine Specification 4 Eddy Current Dynamometer with Controller 6 Solenoid Injector 7 Feed/Auxiliary Fuel Pump 9 **CRDI Single Plunger High-pressure pump** 10 Fuel Pressure Regulator Valve/PCV 13 Rail Fuel Pressure Sensor 14 **Fuel Temperature Sensor** 16 **Coolant Temperature Sensor** 16 Charge air pressure & Intake Air Temperature Sensor 18 **RPM/Crank Position Sensor** 20 Cam angle Sensor 23 MASS AIR FLOW METER 25 ACCELERATOR PEDAL MODULE 27 **Diesel Particulate Filter** 29 Diesel Particulate Filter – Differential Pressure Sensor 32 Temperature sensor before Diesel Particulate Filter 33 Cruise Control for Constant speed Test 34 Exhaust Gas Recirculation Solenoid Valve/ EGR - Programmable linear actuator 35 **CRDI Open ECU Overview** 36 **CRDI Open ECU Capabilities** 37 **ECU** Specification 38 Calibration tool with i-connect Software 39 **On-Board Diagnostics (OBD) Tool** 43 i-tune Software with data file(For Programming ECU) 40 Set idle Speed – Variable 42

Closed loop control for idling-(Tuning will be done by Legion Brothers)	43
Injection start angle of pilot injection/Start of injection (SOI) pilot - Variable	44
Injection Quantity Pilot, Main and post Injection – Variable	45
Injection start angle of Main injection - Variable	47
Injection start angle of Post injection - Variable	47
Open Loop Fuel Rail Pressure - Variable	48
Drivers Demand	49
Wiring Harness	50
Engine Combustion Pressure Sensor	51
DP sensor with inline transmitter – Air Flow Measurement	53
Fuel measurement - Optical liquid level sensor constant volume, fully automatic	55
Data Acquisition Card	57
Rotatory Encoder	58
Temperature Measurement Location & Type	59
Dynamometer load - Strain gauge load cell with the inline transmitter	60
Engine Test Express Software for Engine Performance & Combustion Studies	61
Intake, Exhaust and Cooling System	62
Gas Injector for CNG, H2 and LPG	63
CNG and Hydrogen Gas Pressure Reducer	64
LPG Reducer	65
Flashback Arrestor	66
Gasoline & Ethanol Fuel injector for gasoline & Ethanol injection system	67
Gasoline & Ethanol Feed Pump	68
Laptop	69
ECU Scan Tool with Software	70
Engine Duel Fuel Operating Modes	71

Twin Cylinder CRDI Engine

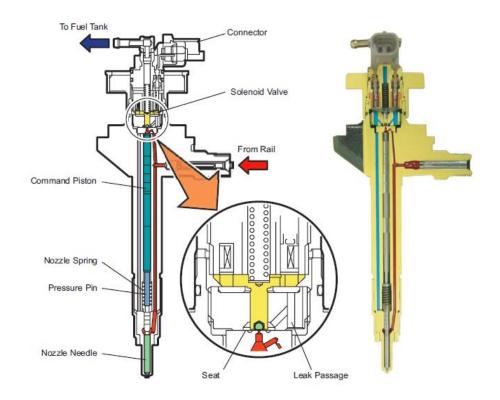
Engine Specification	
Number of Cylinder	02
Engine Displacement (CC)	900 сс
Cooling	Water
Camshaft	SOHC
Compression Ratio	18.5:1
Bore	83 mm
Stroke	84 mm
Firing Order	1-2
Fuel Injection	Common Rail Direct Injection technology with
	solenoid injection
Pressure control	Diesel Pressure Regulating Valve
Injection Pressure	1400 Bar Max
Aspiration	Turbo charged
	Turbo Charger with waste gate actuator and
	turbo blow off valve
Torque (Nm/Kgm)	98 Nm @1800 - 3000 RPM
EGR	Exhaust Gas Recirculation (Vacuum control)
Injector	Solenoid
Sensors/Actuators	Crank Position Sensor
	Cam Position Sensor
	Mass Air Flow Sensor
	Charge Air Pressure Sensor
	Rail Fuel Pressure Sensor
	Charge air pressure & Intake Air Temperature
	Sensor
	Coolant Temperature Sensor
	Fuel Temperature Sensor
	Exhaust Temperature Sensor Before DPF
	Differential Exhaust Pressure Sensor across DPF
	Accelerator Pedal
	Cruise Control Switch

Detailed Sensors/Actuators specification is continued in the the next pages.

Eddy Current Dynamometer with Controller

Principle of Eddy-Current Electro Brake Dynamometer

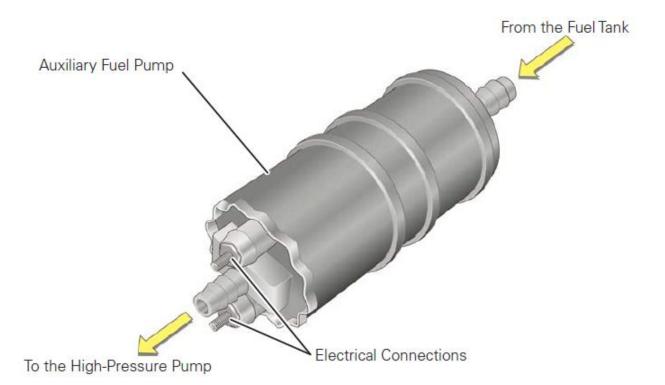
Eddy-Current Dynamometer's theory is based on Eddy-Current (Fleming's law of right hand). The construction of eddy-current electro brake as shown in the picture below, has a notched disc(rotor) which is driven by a prime mover(such as engine, etc.) and magnetic poles(stators) are located outside of it with a gap. The coil which excites the magnetic pole is wound in circumference direction. When a current runs through exciting coil, a magnetic flux loop is formed around the exciting coil through stators and a rotor. The rotation of rotor produces density difference, then eddy-current goes to stator. The electromagnetic force applies in opposite of the rotational direction by the product of this eddy-current and Vector of magnetic flux and it becomes brake.


Technical Specification		
Туре	Eddy Current	
Make	Technomake	
Model	TME40	
Cooling	Water	
Torque Capacity	120 Nm @ 1800 – 3000 RPM	

Solenoid Injector

General Description

- The injector injects the pressurized fuel in the rail into the engine combustion chamber at the optimal injection timing, injection quantity, injection rate, and injection pattern, in accordance with signals from the ECU.
- Injection is controlled using a TWV (Two-Way Valve) and orifice. The TWV controls the pressure in the control chamber to control the start and end of injection. The orifice controls the injection rate by restraining the speed at which the nozzle opens.
- The command piston opens and closes the valve by transmitting the control chamber pressure to the nozzle needle.
- When the nozzle needle valve is open, the nozzle atomizes the fuel and injects it.
- Maximum injection pressure 1300Bar

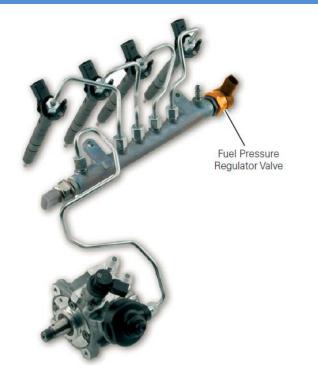


CRDI Injector Specification	
Make	Bosch
Max Flow	70mm^3/inj
Fuel input	Top-feed injector
Fuel	Diesel
Operating pressure	Up to 1500 bar
Operating temperature range	-31 to 130°C
Booster supply	14 V
Booster current	20 A
Booster time	500 μs
Power supply	12 V
Pick up current	17.5 A
Pick up time	800 μs
Hold power supply	12 V
Hold current	12.5 A hysteresis 0.8 A
Coil resistance	1,500 mOhm (ambient temp.)

Feed/Auxiliary Fuel Pump

The Auxiliary Fuel Pump is a roller-cell pump. It is located in the engine compartment and has the task of feeding fuel from the fuel tank to the high-pressure pump. The Auxiliary Fuel Pump is actuated by the Engine Control unit through a fuel control module and increases the fuel pressure to approximately 73 psi (5 bar). Effects of Failure If the Auxiliary Fuel Pump fails, the engine runs at first with reduced power. An engine start up is not possible.

Technical Specification		
Make	Bosch	
Operating pressure	72.5 PSI (5 Bar)	
Minimum Current	12 Volts / 13 Amp	
Minimum Flow @ Outlet	80 GPH (300 LPH)	
Fuel Pump Location	Inline	
High Temperature Reduction	8 GPH (30 LPH)	
Length	196 mm	
Diameter	60mm	



CRDI Single Plunger High-pressure pump

Technical specification		
Make	Bosch	
Model	cp4i pump	
Max. System pressure	1500 bar	
Max delivery quantity	2.2 cm3/rcam	
Minimum volumetric efficiency	85%	
Max number of strokes	10,500 min-1	
Pressure relief valve	Integrated	
Pressure regulator	Excluded	

Fuel Pressure Regulator Valve/PCV

Specification	
Make	Bosch
Input Signal Type	PMW
Max Operating temperature	150°C
Max Operating Pressure	1800 Bar

Fuel Pressure Regulator Valve

Design

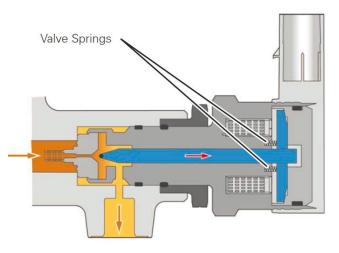
The Fuel Pressure Regulator Valve is located on the high-pressure accumulator (rail). Opening and closing of the Fuel Pressure Regulator Valve adjusts the pressure of the fuel in the high-pressure area. This is actuated by the Engine Control Unit with a pulse-width modulated signal.

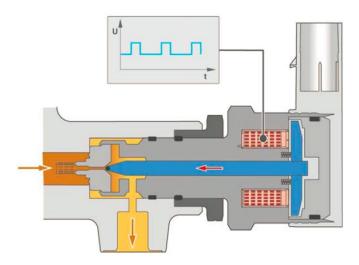
High-Pressure Accumulator (Rail) Valve Needle Valve Anchor Valve Anchor Valve Spring

How it Works

In contrast to conventional control valves in common rail injection systems, the Fuel Pressure

Regulator Valve is open in the non-energized state.

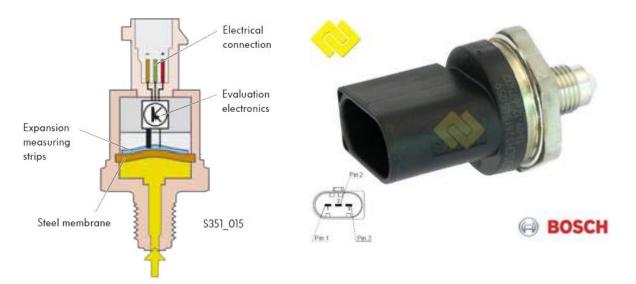

Fuel Pressure Regulator Valve in Rest Position (Engine "Off")


If the Fuel Pressure Regulator Valve is not activated, the pressure regulator valve is opened by the valve springs. The highpressure area is connected to the fuel return. This ensures volume compensation between the high-pressure and lowpressure areas. Fuel vapour lock, which can occur during the cool-down with engine standstill in the high-pressure accumulator (rail), is avoided and the startup properties of the engine are improved.

Fuel Pressure Regulator Valve Activated (Engine "On")

To set an operating pressure of

200 to 1300 bar in the high-pressure accumulator, the Fuel Pressure Regulator Valve is actuated by the Engine Control Unit with a pulse-width modulated (PWM) signal. Upon actuation a magnetic field is generated in the solenoid coil. The valve anchor is tightened and presses the valve needle into its seat. A magnetic force opposes the fuel pressure in the highpressure accumulator. Depending on the duty cycle of the actuation, the flow crosssection to the return line and the exhaust quantity is changed. This also allows fluctuations in the pressure in the high pressure accumulator to be compensated.


Rail Fuel Pressure Sensor

Rail Fuel pressure Sensor

The fuel pressure sender is located on the high-pressure accumulator (rail). It determines the current fuel pressure in the high-pressure area.

Function

The fuel pressure sender contains a sensor element, which is comprised of a steel membrane with expansion measuring strips. The fuel pressure reaches the sensor element via the high-pressure connection. In the event of a change in pressure, the steel membrane's deflection changes, as does the resistance value of the expansion measuring strips. The evaluation electronics calculate a voltage from the resistance value and transmit this to the Engine Control Unit. A characteristic curve stored in the Engine control unit is used to calculate the current fuel pressure.

Make	BOSCH		
Power	5 Volts DC		
Range	0 – 1800 MPa		
Calibration Data	Output Voltage	Pressure in Bar	
	0.49988	0	
	4.50012	1800 Bar	

High-pressure connection

Fuel Temperature Sensor

Technical Specification		
Mechanical Data		
Make	Bosch	
Model	NTC M12	
Male thread	M12x1.5	
Wrench size	19 mm	
Installation torque	25 Nm	
Weight w/o wire	29 g	
Electrical Data		
Characteristic	NTC	
Nominal resistance at 20°C	2.5 kΩ ± 5 %	
Characteristic		
Accuracy at 25°C	± 1.4°C	
Accuracy at 100°C	± 3.4°C	
Response time tau 63 in still water	< 15 s	

Fuel Temperature Sensor

The fuel temperature sender is located in the fuel supply pipe to the high-pressure pump. The fuel temperature Sensor is used to determine the current fuel temperature. Sensor type : Negative Temperature coefficient(NTC)

Signal usage

The diesel direct injection system control unit J248 uses the fuel temperature sensor signal to calculate the fuel density. This serves as a correction variable to calculate the injection quantity, to regulate the fuel pressure in the high-pressure accumulator and to regulate the quantity inlet to the high-pressure pump.

Coolant Temperature Sensor

Technical Specification

Mechanical Data		
Make	Bosch	
Model	NTC M12	
Male thread	M12x1.5	
Wrench size	19 mm	
Installation torque	25 Nm	
Weight w/o wire	29 g	
Electrical Data		
Characteristic	NTC	
Nominal resistance at 20°C	2.5 kΩ ± 5 %	
Characteristic		
Accuracy at 25°C	± 1.4°C	
Accuracy at 100°C	± 3.4°C	
Response time tau 63 in still water	< 15 s	

Coolant temperature Sensor

The coolant temperature sender is located on the right cylinder head's coolant connection. The sender provides the diesel direct injection system control unit with information on the current coolant temperature. Sensor type: Negative Temperature coefficient (NTC)

Coolant temperature Sensor Signal usage

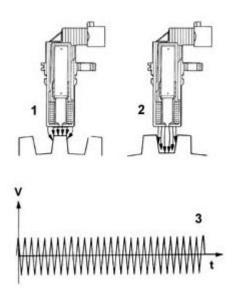
The coolant temperature is used by the Engine control unit as a correction value for calculating the injection quantity, the charge air pressure, the injection point and the exhaust gas recirculation quantity.

Charge air pressure & Intake Air Temperature Sensor

Technical data						
Parameter	min	type		max		
Feature				Integra	ted temper	ature
sensor			-			
Pressure range kPa (p_1p_2)			(3)	20		4 300
Operating temperature	ϑ _B	°C		-40		+130
Supply voltage (1 min)	Uv	V		4,5	5	5,5
Current input at $U_V = 5 V$	I _V	mA		6	9	12,5
Load current at output	/L	mA		-1		0,5
Load resistance to U_V or ground	R _{pull-up}	kΩ		5	680	
Load resistance to U_V or ground	R _{pull-down}	kΩ		10	100	
Response time	$\tau_{10/90}$	ms			1	
Voltage limitation at $U_V = 5 V$ - lower limit		V		0,25	0,3	0,35
Voltage limitation at $U_V = 5 V$ - upper limit		V		4,75	4,8	4,85
Limit data						
Supply voltage	U_{Vmax}	V				16
Storage temperature		°C		-40		+130
Temperature sensors						
Measuring range	ϑ_{M}	°C		-40		+130
Measurement current		mA				1 ¹)
Rated resistance at +20 °C		kΩ			2,5 ± 5	%
Temperature/time constant	τ ₆₃	s			10 ²)	

Accessories are not included in the scope of delivery of the sensor and are therefore to be ordered separately as required.


Intake air temperature sensor measures the intake air temperature and charge air pressure and is located in the intake manifold


Charge air pressure Sensor	Intake air temperature
This sensor is a semiconductor type sensor. It	The intake air temperature sensor detects the
measures pressure utilizing the piezoelectric	temperature of the intake air after it has passed
effect that when the pressure on the silicon	the turbocharger.
element in the sensor changes, its electrical	The sensor portion that detects the temperature
resistance changes. In addition, the air pressure	contains a thermistor. The thermistor, which has
on this sensor is switched between the pressure	an electrical resistance that changes with
within the intake manifold and the atmospheric	temperature, is used to detect the intake air
pressure, so both the intake air pressure and the	temperature.
atmospheric pressure are detected with one	
sensor.	

Signal usage	Signal usage		
The diesel direct injection system Engine control	The Engine control unit uses the sensor signal to		
unit uses the sensor signal to regulate the	calculate a correction value for the charge air		
charge air pressure in case of turbo charged	pressure. Evaluation of the signal gives		
engine	consideration to the influence of temperature		
	on the density of the charge air.		

RPM/Crank Position Sensor

- 1 Maximum magnetic flux
- 2 Minimum magnetic flux
- 3 Induced alternating voltage

TECHNICAL CHARACTERISTICS

	Active	Inductive
Functional principle	differential Hall with or without direction detection	inductive
Temperature range	-40 to +150°C	-40 to +130°C
Air gap	0.2-1.8mm	0.3-1.8mm
Target wheel	steel or multipole target wheel	steel target wheel

PRODUCT VARIANT ADVANTAGES

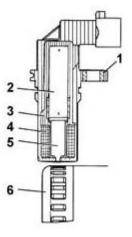
Active	high electromagnetic compatibility (EMC), compact size, low weight, flexible design, direction detection for start-stop functionality
Inductive	high output signal at low speeds, twist insensitive mounting (TIM)
Make Model	Bosch D16

Specifications

It is fitted on the cylinder block/crankcase facing the flywheel on the crankshaft. It is inductive type,

i.e. its operation is determined by magnetic field changes generated by the teeth passing in front of the phonic wheel (60-2 teeth)/(120-4 teeth).

The Engine control unit uses the rpm signal for:

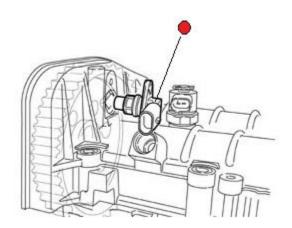

- Determining the engine speed of rotation
- Determining the angular crankshaft position.

Operation

The changeover from full to empty determined by the presence or absence of a gap brings about a magnetic flux change sufficient to generate an induced alternating voltage proportional to the number of teeth on the ring (or phonic wheel).

The frequency and amplitude of the voltage send to the electronic control unit provides the latter with an indication of the engine angular speed.

- 1 Brass bush
- 2 Permanent magnet
- 3 Plastic sensor casing
- 4 Coil winding
- 5 Core
- 6 Ring gear or flywheel
- 7 Coaxial paired cable or electrical connection


The recommended distance (gap) between the end of the sensor and the flywheel for obtaining correct signals should be 0.8 - 1.5 mm.

This distance is not adjustable. If the gap is found to be outside the tolerance limits, check the condition of the sensor and phonic wheel.

Cam angle Sensor

TECHNICAL CHARACTERISTICS

Functional principle	single-Hall technology
Starting function	true power on (TPO)
Installation	twist insensitive mounting (TIM)
Temperature range	–40°C to +150°C (max. 250 hours at +160°C)
Airgap	0.2-1.8mm

Specifications

This Hall effect sensor is fitted on the cylinder head facing the camshaft drive pulley. A tooth on the pulley allows the timing sensor to indicate engine timing position. The Engine control unit uses the timing sensor signal to identify T.D.C. at the end of compression.

Operation

A current-carrying semiconductor layer immersed in a normal magnetic field (force lines at right angles to current direction) generates a potential difference known as a Hall voltage at its terminals. If current intensity remains constant, the generated voltage depends on magnetic field intensity alone. Periodic changes in magnetic field intensity are sufficient to generate a modulated electrical signal with frequency proportional to the speed of magnetic field change. To produce this change, a tooth on the inner part of the pulley periodically moves close to the sensor.

MASS AIR FLOW METER

Technical Specification		
Make	Bosch	
Model	HFM6	
Pulsation accuracy	± 2 %	
New part tolerance	± 1.5 %	
Power supply	5 V, 12 V	
Permissible vibration acceleration	≤150 ms–2	
Installation length L	96 mm	
Connection diam. D	60 mm	

Specifications

The debimeter is located on the air intake sleeve and is hot film type.

Operation

The principle of operation is based on a heated membrane positioned within a measurement channel that carries air into the engine. The hot film membrane is maintained at constant temperature (about 120°C higher than the incoming air temperature) by the heating coil. The air mass that flows through the measurement channel tends to remove heat from the membrane. Current must therefore flow through the coil to maintain the membrane at a constant temperature. This current is measured by a special Wheatstone bridge. The current is therefore proportional to the flowing air mass. The flowmeter measures the air mass directly (not the volume) to eliminate problems of temperature, altitude, pressure etc.

ACCELERATOR PEDAL MODULE

Make : Bosch APM The accelerator pedal module comprises

- The accelerator pedal,
- Accelerator pedal position Sensor -1
- Accelerator pedal position Sensor -2

Two sensors are used to ensure maximum safety. This system configuration is also known as a "redundant system". Redundant literally means "superfluous". In technical terms, there is redundancy when, for instance, an item of information occurs more often than is required for system operation.

Signal utilisation

The engine control unit is able to recognise the current position of the accelerator pedal from the signals supplied by the two accelerator position Sensors.

The two Sensors are sliding contact potentiometers and are mounted on a common shaft. The resistances of the sliding contact potentiometers and the voltages transmitted to the engine control unit vary with each change in the accelerator pedal position. Open housing on accelerator pedal module showing senders

> Accelerator pedal po sender -1-

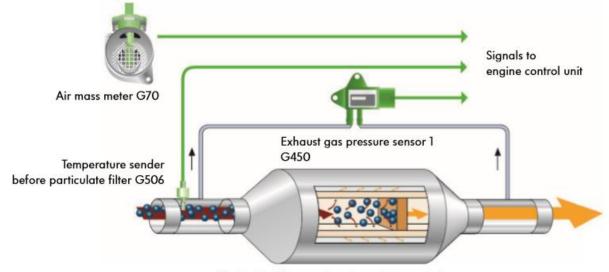
Accelerator pedal positie sender -2-

Diesel Particulate Filter

Design

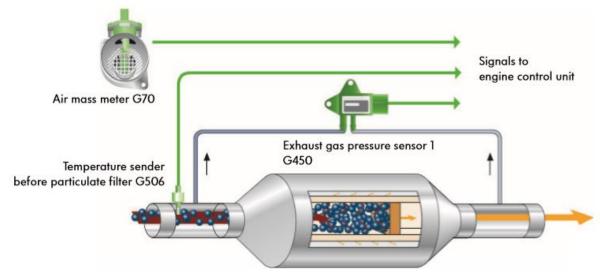
The diesel particulate filter comprises of a honeycomb ceramic matrix made from silicon carbide, which can be found in a metal housing. The ceramic matrix itself has many microscopic channels that run parallel and are alternately connected to each other.

Silicon carbide is a suitable filtering material due to the following properties:

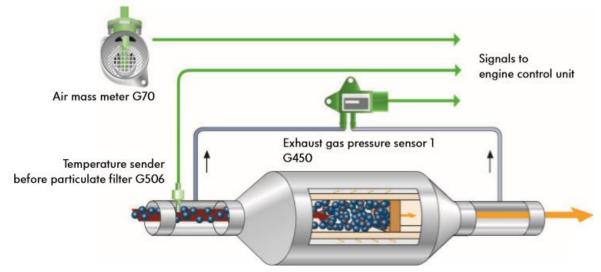

- High mechanical strength
- Very good resistance to thermal changes
- Thermal resilience and conductivity
- High resistance to wear

Regeneration

The diesel particulate filter must be cleaned of the particles of regularly to prevent it from becoming blocked and its function thereby being affected. During the regeneration phase, the particles of carbon stored in the filter are burnt off at a temperature of approx. 500°C. The actual ignition temperature of the particulates is about 600-650°C. This exhaust gas temperature can only be reached on a diesel engine at full throttle.



Particulate filter empty = low resistance to flow


Particulate filter full

Particulate filter full = high resistance to flow

Particulate filter full

Particulate filter full = high resistance to flow

Diesel Particulate Filter – Differential Pressure Sensor

Differential Pressure Sensor Delta-P for Particulate Filter Applications

The pressure sensor described underneath is mainly used to monitor the soot loading of a particulate filter on a diesel engine. The signal of the sensor is not sufficient to determine an optimized timing for regeneration of the DPF. It is part of a soot loading model that should be calculated permanently by the ECU. The sensor helps to determine the content of ashes remaining permanently in the filter. The soot loading model should be calculated in the background with the differential pressure as one of several inputs.

Further input values are:

- Engine load
- EGT (exhaust gas temperature)
- Back pressure

Technical Data: Pressure measuring range (p1..p2): 100 kPa Operating temperature: -40°C...+135°C Energy consumption: 10 mA max.

Electrical connection: Pin 1: supply voltage Vcc +5V stabilized provided by ECU Pin 2: Ground Pin 3: Output 0....+5V

Temperature sensor before Diesel Particulate Filter

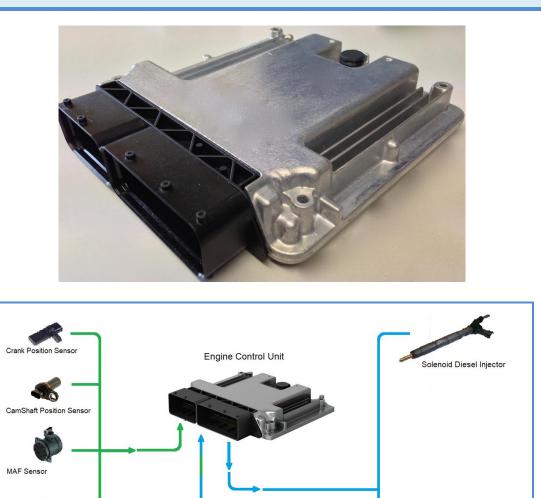
The exhaust gas temperature sensor (EGTS), which is located in front of the Diesel Oxidation Catalyst (DOC) and/or in front of the Diesel Particulate Filter (DPF), detects exhaust gas temperature and converts it into a voltage and feeds back to the engine ECU with the voltage signal in order to control engine conditions to effectively reduce emission.

Model Number	:	55355404
Make	:	Generic

Cruise Control for Constant speed Test

Cruise control is a system that engine have in them. The purpose of the cruise control system is to give operator the ability to automatically set their acceleration to one speed. when the accelerator is not operated, the acceleration will keep on going at the speed in which one set to for cruise control. You have the option to easily deactivate cruise control simply by stepping on the brake pedal. This will cause the acceleration to go back to manual control once again.

Exhaust Gas Recirculation (Vacuum control)


In internal combustion engines, exhaust gas recirculation (EGR) is a nitrogen oxide (NOx) emissions reduction technique used in petrol/gasoline and diesel engines. EGR works by recirculating a portion of an engine's exhaust gas back to the engine cylinders. This dilutes the O2 in the incoming air stream and provides gases inert to combustion to act as absorbents of combustion heat to reduce peak in-cylinder temperatures. NOx is produced in high temperature mixtures of atmospheric nitrogen and oxygen that occur in the combustion cylinder, and this usually occurs at cylinder peak pressure.

Rail Pressure Sensor

T Map Sensor

CRDI Open ECU Overview

The engine ECU constantly ascertains the status of the engine through signals from the sensors, calculates fuel injection quantities etc. appropriate to the conditions, actuates the actuators, and controls to keep the engine in an optimal state. The injectors are actuated by the charge circuit in the engine ECU. The ECU also has a diagnosis function for recording system troubles.

Can + K Line Communication

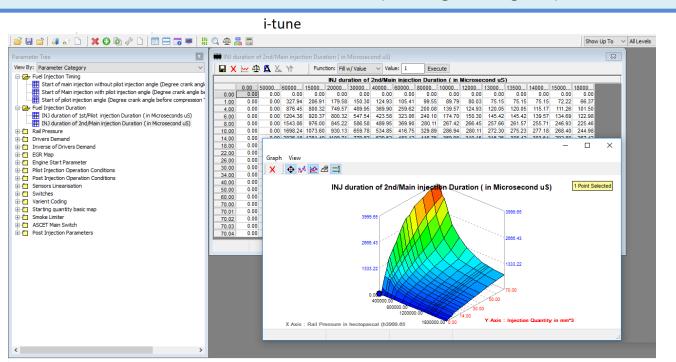
EGR Control Valve

Open ECU for complete control of the engine parameters (ECU Capabilities)

- ✓ Variable Fuel Injection Quantity for Pilot Injection.
- ✓ Variable Fuel Injection Quantity for Main Injection.
- ✓ Variable Fuel Injection Quantity for Post Injection.
- ✓ Fuel Injection Timing Control(Start of injection SOI for Pilot Injection)
- ✓ Fuel Injection Timing Control(Start of injection SOI for Main Injection or separation angle among multiple injection)
- ✓ Fuel Injection Timing Control(Start of injection SOI for Post Injection or separation angle among multiple injection)
- Multiple Injections(Pilot, Main and Post injection or separation angle among multiple injection)
- ✓ EGR Flow Control
- ✓ Smoke Limitation
- ✓ Variable Rail Pressure Control (300 to 1400 Bar)(open and closed loop facility available)
- ✓ Rail pressure limitation based on fuel quantity
- ✓ Rail pressure limitation based on engine speed
- ✓ Fuel Quantity correction based on Engine temperature
- ✓ Fuel Quantity correction based on intake air temperature
- ✓ Diesel particulate filter regeneration
- ✓ Starting fuel injection quantity based on engine temperature.
- ✓ Cold start assistance
- ✓ Duel fuel control for CNG, Hydrogen, LPG and Gasoline
- ✓ Drivers Demand
- ✓ Sensor calibration
- ✓ Calibration charts are provided for Injection Quantity at various pressures
- ✓ Cruise Control for constant speed Engine test
- ✓ Throttle pedal for variable speed engine test
- ✓ Closed loop control for idling

ECU Specification

SI No	Description	Specification
1	Operating Voltage	12 V
2	Input Voltage (limits)	11 – 16 V
3	Analog Input Pins	34
4	Analog Output Pins	8
5	Digital Input Pins	20
6	Digital Output Pins	10
7	PWM Output Pins	20
8	Peak and Signal for Solenoid injector	2
9	Pick up current	17.5 A
10	Hold current	12.5 A
11	Booster supply	14 V
12	Booster current	20 A
13	Relay outputs	4(low side)
14	H-bridge	8
15	Communication	CAN Bus
16	Memory	1024 КВ



Calibration Tool with i-Connect Software (For Interacting with ECU)

The equipment is supplied along with an ECU calibration tool and ECU calibration software called i-Connect. i-connect software is a powerful windows based software used to interact with the Engine ECU using the calibration tool. The Calibration tool is integrated with drivers for CAN BUS to USB convertor module/Adaptor/dongle. CAN adapters allow to connect a PC to CAN networks in the ECU. The access is given by USB 2.0. The calibration tool has a data speed transfer rate @ 5-1010kbps and withstands temperature from -25 to 80°C.

i-tune Software with ECU data file (For Programming ECU)

i-tune is an powerful windows based software used to tune the engine fuel injection and active emission component variables. The ECU is supplied along with a data file called CRDI V2.itune, the data file is fully loaded with engine maps. The researcher can tune the maps as desired. Software capabilities.

- ✓ Variable Fuel Injection Quantity for Pilot Injection.
- ✓ Variable Fuel Injection Quantity for Main Injection.
- ✓ Variable Fuel Injection Quantity for Post Injection.
- ✓ Fuel Injection Timing Control(Start of injection SOI for Pilot Injection)
- ✓ Fuel Injection Timing Control(Start of injection SOI for Main Injection or separation angle among multiple injection)
- ✓ Fuel Injection Timing Control(Start of injection SOI for Post Injection or separation angle among multiple injection)
- Multiple Injections(Pilot, Main and Post injection or separation angle among multiple injection)

- ✓ EGR Flow Control
- ✓ Smoke Limitation
- ✓ Variable Rail Pressure Control (300 to 1400 Bar)(open and closed loop facility available)
- ✓ Rail pressure limitation based on fuel quantity
- ✓ Rail pressure limitation based on engine speed
- ✓ Fuel Quantity correction based on Engine temperature
- ✓ Fuel Quantity correction based on intake air temperature
- ✓ Diesel particulate filter regeneration
- ✓ Starting fuel injection quantity based on engine temperature.
- ✓ Cold start assistance
- ✓ Duel fuel control for CNG, Hydrogen, LPG and Gasoline
- ✓ Drivers Demand
- ✓ Sensor calibration
- ✓ Calibration charts are provided for Injection Quantity at various pressures
- ✓ Cruise Control for constant speed Engine test
- ✓ Throttle pedal for variable speed engine test
- ✓ Closed loop control for idling

Set idle Speed - Variable

Idle speed (or idle) is the rotational speed an engine runs at when the engine is idling, that is, when the engine is uncoupled from the drivetrain and the throttle pedal is not depressed. In combustion engines, idle speed is generally measured in revolutions per minute (rpm) of the crankshaft. At idle speed, the engine generates enough power to run reasonably smoothly and operate its ancillaries (water pump, alternator, and, if equipped, other accessories such as power steering), but usually not enough to perform useful work, such as loading the engine.

The idling speed of the engine can be varied with respect to the engine temperature with the help of the i-tune software. Below shown is the idle speed map.

Engine Idle Speed Control Map

Engine Temp in ^⁰ C		-15.00		20.25	50.25	80.25
idle Speed in RPM	1080.0	990.0	900.0	830.0	760.0	700.0

Closed loop control for idling-(Tuning will be done by Legion Brothers)

Closed loop idle control is a feature that intended to keep the idle steady and consistent regardless of internal/external physical conditions change. (AFR, MAP, CLT, IAT etc')

In order to control a changing conditions environment an PID control is implemented.

PID control

PID is a "closed loop" control algorithm (instructions for solving a task) used to adjust a control value, (eg a idle valve position). In order to process actual values (eg engine speed) to match the desired TARGET value (eg, idle speed) then adjusts the PID-algorithm control value according to these three elements.

Summary

P is used to bring the value close to the target.

I is used to bringing the error to zero.

D is used to dampen the response.

Setup process

P and I must always be used (not allowed to be zero), D is optional and not always necessary.

•Usually starting by increasing the P and I together (using the same values) until it becomes slightly unstable.

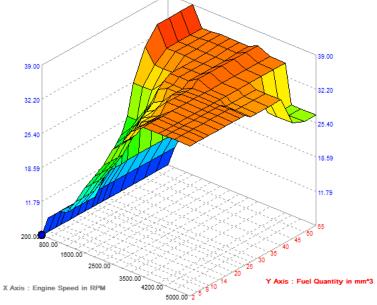
•Bring in some D to counteract that, and then fine-tune each value. Often by reducing P and increasing I.

•The overall goal is to use as high values as possible while still having a stable response.

•Then decrease all values a bit to add some safety margin to prevent overshoot or oscillation.

Please note : The PID control for the idle speed control is tuned by us(Legion Brothers), the tuning is done considering the loads of electric dynamo (Alternator for charging the battery), unexpected dynamic braking, frictional loads and environment changes.

Injection start angle of pilot injection/Start of injection (SOI) pilot - Variable


Fuel injection is the introduction of fuel in an internal combustion engine, most commonly automotive engines, by the means of an injector. Injection Start angle of pilot injection is the start angle of fuel in Compression stroke of the engine. Pilot injection is carried out before the main injection. The suction start angle is specified as 360° crank angle, suction end or compression start is mentioned as 180° crank angle.

				S	tart of p	oilot inje	ction an	gle (Deg	ree crai	nk angle	before	compres	sion TD	C)		
	200.00	400.00	800.00	1000.00	1300.00	1600.00	1900.00	2200.00	2500.00	2800.00	3100.00	3500.00	4000.00	4200.00	4500.00	5000.00
2		8.00	11.30	11.51	14.51	18.62	21.88	24.00	27.98	30.00	33.66	34.95	34.98	24.00	24.00	34.85
5	1.00	1.00	11.38	10.84	14.51	18.62	21.48	24.00	17.66	10.00	23.46	14.00	34.00	34.65	14.00	14.86
8	- 10	1.00	11.38	10.04	14.01		21.00	24.00	1.00	10.00	10.00	14.00	14.00	14.00	14.00	10.00
10	- 10	1.00	1.38	10.00	14.01		21.00		11.00		10.00	10.00	10.00	24.00	10.00	24.00
14		1.00		-	10.00	1.00					10.00	14.68	10.00	10.00	10.00	10.00
17		1.44	12.81	10.00		10.00	10.00	1.00		1.00	14.00	14.00	14.00	10.00	14.00	10.00
20		1.00	14.00		-					10.00	14.00	24.00	100.000	10.00	14.00	24.00
23	- 10		14.00	10.00	21.68				1.00	10.01	14.00	24.00	14.00	10.00	10.00	14.00
25	1.00		14.00	21.00			10.00	1 10.00	10.01	14.01	24.00	24.00	14.00	14.00	14.00	10.00
28				24.00	10.00			100.00	10.01	14.01	14.00	34.00	14.00	10.00	10.00	10.00
30			-	10.00	10.000		1.00	10.00	14.00	14.00	10.00	24.00	14.00	11.48	10.00	10.00
35				-				10.00	14.00	14.00	18.00	14.00	14.00	11.00	1.00	10.00
40				10.00	10.00			14.40	in the	14.85	10.00	14.00	14.00	10.00	1.00	10.00
45		-	10.00	10.00	10.00	10.00	1.00	10.00	24.00	14.80	10.00	24.80	24.00	100.00		10.01
50			14.00	-	10.00	-			10.20	16.24		24.00	14.00			17.00
55					-						14.04	14.94	14.00			

Y Axis = Injection Quantity in mm^3, X Axis = Engine Speed in rpm, Map Content = Deg crank Angle

The table is values blurred due to confidential level

Start of pilot injection angle (Degree crank angle before compression TDC)

Injection Quantity Pilot, Main and post Injection – Variable

Injection quantity pilot injection is the amount of fuel that will be injected during the pilot injection phase. The fuel injection quantity table is shown below. The Y axis is the total fuel demand, X axis is the engine speed in rpm and the map content is pilot fuel injection quantity.

The Y axis specifies the total fuel demand by the engine including Pilot injection quantity, Main injection quantity and post injection quantity. For example when the engine total fuel demand is $35 \text{mm}^3/\text{cyc}$ at 1000rpm, 4mm3/inj is utilised for pilot injection remaining $31 \text{mm}^3/\text{cyc}$ is utilised for the main and post injection as per the user input. Maximum injection quantity table are provided will limit the Injection quantities. The maximum injection quantity table are designed in such way that no injections will colloid with each other.

Pilot Injection Quantity Table

rpm n^3/cyc	250.00	500.00	750.00	1000.00	injection mass 1250.00	per injecti 1500.00	on (mg/i njec 1750.00	tion)(averag	e engine sp 2250.00	eed, current : 2500.00	2750.00	ntity)/mm^3/ 3000.00	/inj 3250.00
5.0000													
7.5000													
10.0000	1.111												
12.5000	1.000							1.0000					
15.0000	1.000							1.0000	1.000		· · · · · · · · · · · · · · · · · · ·		1.000
17.5000	2.000			1.000	6 1. HIL			1.000	1.000	1.000		1.000	1.1000
20.0000	4		1.000	0.000	c 1.000		1.000	4.0000	0.0000	1.0000	0.000	0.000	0.0000
22,5000	B. 1000		1.000	0.000	4 1.000			1.000	0.0000	1.1000	1.0000	1.0000	1.0000
25.0000	1. INTE		1.000	6.000	a			1.0000	6.0000	2,000	1.0000	1.0000	1.1044
27.5000	1		1.000	1.000	a			1.1044	8.0000	1.0000	1.0000	1.000	1.000
30.0000	A		1.000	2,000	0			1.1000	0.0000	1.0000	0.0000	a. 10000	1.0000
35.0000				4.000	1			1.000	0.0000	1.000	1.0000		1.0000
40.0000			a. 1004	€.000				1. Anna	a	1.0000	a	a. 100.00	8.0055
50.0000			a. 1000	6.000			a second	1.000	1.000		0.0000	a. seen	6.0000
60.0000				6.000									
													9.9990
70.0000			8,0000	€.000	0		1.000	1.0000	0.0000	1.0000		1.0000	0.0000

The table is values blurred due to confidential level

Post Injection Quantity Table

rpm mm^3/cyc	250.00	500.00	750.00	in; 1000.00	jection mass 1250.00		on (mg/injec 1750.00	tion)(averag 2000.00	e engine spe 2250.00	ed,current : 2500.00	injection quar 2750.00	ntity)/mm^3/ 3000.00	inj 3250.00
5.0000 7.5000 10.0000	5.0000 5.0000 5.0000	5.0000	5.0000 5.0000 5.0000	5.0000	5.0000 5.0000 5.0000	5.0000 5.0000 5.0000							
12.5000 15.0000 17.5000	5.0000 5.0000 5.0000	5.0000 5.0000	5.0000 5.0000 5.0000	5.0000 5.0000	5.0000 5.0000 5.0000	5.0000 5.0000 5.0000							
20.0000 22.5000 25.0000	5.0000 5.0000 5.0000	5.0000 5.0000	5.0000 5.0000 5.0000	5.0000 5.0000	5.0000 5.0000 5.0000	5.0000 5.0000 5.0000							
27.5000 30.0000 35.0000	5.0000 5.0000 5.0000	5.0000	5.0000 5.0000 5.0000	5.0000	5.0000 5.0000 5.0000	5.0000 5.0000 5.0000							
40.0000 50.0000 60.0000 70.0000	5.0000 5.0000 5.0000 5.0000	5.0000 5.0000	5.0000 5.0000 5.0000 5.0000	5.0000 5.0000	5.0000 5.0000 5.0000 5.0000	5.0000 5.0000 5.0000 5.0000							

The remaining quantity is utilised for main injection.

Maximum injection Quantity table for Pilot Injection

rpm	inj 500.00	ection mass pe 15	er injection 00.00		on)(average (00.00		current inje 00.00	-	ity)/mm^3/in; 00.00	j
mm^3/cyc		1000.00	20	00.00	30	00.00	40	00.00	50	00.00
5.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000
10.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000
15.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000
20.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000
25.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000
30.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000
40.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000
50.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000
60.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000
70.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000

Maximum injection Quantity table for Post Injection

			-							
	i	njection mass p	per injection	(mg/injecti	on)(average)	engine speed	current inj	ection quant:	ity)/mm^3/in	j
rpm	250.00	7	50.00	12	50.00	17	50.00	30	00.00	
mm^3/cyc		500.00	10	00.00	15	00.00	20	00.00	45	00.00
5.0000	8.000	7.7000	7.3000	6.5000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000
10.0000	8.000	0 7.7000	7.3000	6.5000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000
15.0000	8.000	0 7.7000	7.3000	6.5000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000
20.0000	8.000	0 7.7000	7.3000	6.5000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000
25.0000	8.000	0 7.7000	7.3000	6.5000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000
30.0000	8.000	0 7.7000	7.3000	6.5000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000
40.0000	8.000	0 7.7000	7.3000	6.5000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000
50.0000	8.000	0 7.7000	7.3000	6.5000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000
60.0000	8.000	0 7.7000	7.3000	6.5000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000
70.0000	8.000	0 7.7000	7.3000	6.5000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000

Injection start angle of Main injection - Variable

The Main Injection provides the energy for performance of the engine. It is therefore the Main

factor responsible for supplying the engine torque. The injection start angle of main injection is variable.

				S	tart of M	iain inje	ction wit	th pilot i	njection	angle (I	Degree c	rank and	gie befor	e comp	reasion	TDC)				
	200.00	600.00	750.00	1000.00	1300.00	1600.00	1900.00	2200.00	2500.00	2800.00	3100.00	3500.00	4000.00	4200.00	4500.00	5000.00	5100.00	5200.00	5300.00	5400.00
2.00	1.00	0.000			1.000	4.21	4.95	1 10		4.00	0.00	10.00	11.000	10.01	10.00	10.00	10.00	10.000	10.00	10.00
5.00	6.00	1.00		1.00	1.65	4.01			1.44	1.00	6.00	10.00	11.00	10.0	10.00	1.00	10.00	1.00	1.00	
8.00	4.00	1.00		- 44	1.66	4.27	1.07		1.00	4.00	1.00	1.00	11.68	10.01	1.4	1.16		1.00		1.00
10.00	0.00	1.05	1.00	1.84	1.05	1.00	1.00		1.0	1.44	1.00	1.00	11.00	10.01	1.0		1.00	1.00	1.00	1.00
14.00	1.00	1.00	1.00	1.64	1.00			- 10	1.00	1.00	1.00		1.00	10.01	10.00	1.00		1.00		
17.00	1.00	1.00		1.00	1.65	1.44		-	1.01	1.00	1.00		11.00	10.00	1.0	1.00				10.0
20.00	1.00	1.00			1.44	1.48		1.00		1.94	1.00	10.00	-	10.00	10.00	1.00		1.00		
23.00	1.00	1.00	1.00	1.00	1.00	1.46			1.00	1.00		1.44		1.00	10.00		1.00	1.00	1.00	
25.00	1.00	1.00	1.48	4.01					1.00	1.10	1 1 1 1	10.00	1.00		10.00	1.00	1.00	1.00	1.00	
27.50	1.01		1.48						1.00	1.00	1 1 1 1	1.16	10.01	1.00	10.00	1.00	1.00	1.00		
30.00	1.01		1.10		1.00	1.10	1.10		1.00	1.00	1.10	10.00	10.00	1.00	1.0		1.00	14.00		
35.00	1.01		1.00						1.00	1.46	1.00	1.00	10.00	10.00	1.0	1.00	1.00	10.00		1.00
40.00	1.01				1.00						1.00						10.00	1.00	1.00	
45.00	1.00									1.00				1.00	1.00	1.00	1.00	1.00	1.00	1.00
50.00	1.01			- 4.00	1.00					0.00	1.40			1.00			10.00	10.00	1.00	
55.00	1.01	1.01	1.00	1.01	1.00				1.00		1.00	1.00			1.00		10.00	10.00	1.00	
60.00	1.01	2.94		4.05					1.00	1.00	1.00	10.00	10.00	1.00	10.00	1.00	10.00	1.00	1.00	
65.00	1.21	2.64	4.00		1.01				1.00	1.00		1.00	10.00	-	10.00	1.00	10.00	10.00	1.00	10.0
70.00	1.01	2.84	4.10	4.00		1.10		1.45	1.01	1.00	1.00	11.04	10.00	17.95	10.00	10.00	10.00	10.00	-	10.00
75.00	1.81	2.84	4.00	4.01	4.01			1.44	1.01	6.00	14.62	12.68	14.00	17.94	10.00	19.95	10.00	-	10.00	-

Y Axis = Injection Quantity in mm^3, X Axis = Engine Speed in rpm, Map Content = Deg crank Angle

The table is values blurred due to confidential level

Injection start angle of Post injection - Variable

Post injection is a late injection (>40° after TDC) normal specified in negative values. Its purpose is to bring hydrocarbons to the oxidation catalyser for exothermic reaction. Post injection is not torque forming

torque forming

Injection start angle of Post injection

rpm	0.00		870.00		920.00		ngle(average 1500.00	engine speed	l,current in <u>:</u> 2500.00		ity)/deg Cr5 3500.00	5
mm^3/cyc		830.00		880.00		1000.00		2000.00		3000.00		4000.00
0.0000	-150.0000	-150.0000	-150.0000	-150.0000	-150.0000	-160.0078	-160.0078	-157.9922	-157.0078	-157.0078	-159.0000	-154.9922
2.5000	-150.0000	-150.0000	-150.0000	-150.0000	-150.0000	-160.0078	-160.0078	-157.9922	-157.0078	-157.0078	-159.0000	-154.9922
5.0000	-150.0000	-150.0000	-150.0000	-150.0000	-150.0000	-160.0078	-160.0078	-157.9922	-157.0078	-157.0078	-159.0000	-154.9922
10.0000	-150.0000	-150.0000	-150.0000	-150.0000	-150.0000	-160.0078	-160.0078	-157.9922	-154.9922	-157.0078	-159.0000	-154.9922
15.0000	-150.0000	-150.0000	-150.0000	-150.0000	-150.0000	-154.9922	-154.9922	-157.0078	-156.0000	-157.9922	-162.0000	-154.9922
20.0000	-150.0000	-150.0000	-150.0000	-150.0000	-150.0000	-160.0078	-154.9922	-156.0000	-157.0078	-156.0000	-160.0078	-157.0078
25.0000	-150.0000	-150.0000	-150.0000	-150.0000	-150.0000	-160.0078	-159.0000	-154.9922	-160.0078	-160.0078	-160.0078	-154.9922
30.0000	-150.0000	-150.0000	-150.0000	-150.0000	-150.0000	-160.0078	-159.0000	-157.0078	-157.9922	-159.0000	-160.0078	-156.0000
35.0000	-150.0000	-150.0000	-150.0000	-150.0000	-150.0000	-160.0078	-160.0078	-154.9922	-157.0078	-156.0000	-160.0078	-160.0078
40.0000	-150.0000	-150.0000	-150.0000	-150.0000	-150.0000	-160.0078	-157.9922	-157.9922	-157.9922	-156.0000	-160.0078	-160.0078
45.0000	-150.0000	-150.0000	-150.0000	-150.0000	-150.0000	-160.0078	-157.9922	-157.9922	-160.0078	-154.9922	-160.0078	-160.0078
50.0000	-150.0000	-150.0000	-150.0000	-150.0000	-150.0000	-160.0078	-157.9922	-157.0078	-157.9922	-154.9922	-160.0078	-160.0078
55.0000	-150.0000	-150.0000	-150.0000	-150.0000	-150.0000	-160.0078	-157.0078	-160.0078	-157.9922	-154.0078	-160.9922	-160.0078
60.0000	-150.0000	-150.0000	-150.0000	-150.0000	-150.0000	-160.0078	-157.0078	-157.0078	-157.0078	-154.0078	-162.0000	-160.0078
65.0000	-150.0000	-150.0000	-150.0000	-150.0000	-150.0000	-160.0078	-157.0078	-159.0000	-159.0000	-154.0078	-162.0000	-160.0078
70.0000	-150.0000	-150.0000	-150.0000	-150.0000	-150.0000	-160.0078	-157.0078	-159.0000	-159.0000	-154.0078	-162.0000	-160.0078

Open Loop Fuel Rail Pressure - Variable

The fuel rail pressure can be variable from 300000 to 1350000 hpa. The fuel rail pressure is in the

terms hpa

Fuel rail pressure table/map is shown below.

rpm. mm^3/cyc	250.00	500.00	750.00	1000.00	rail pr 1250.00	essure in 1500.00	1 hPa(ave 1750.00	rage engin 2000.00	2250.00		jection a 2750.00	3000.00	3250.00	3500.00	4000.00	4500.00
5.0000	308008	200200	27560	i present	2,08000	405000	425100	Laborer .	\$72000	100000	#175-111	automi (42500	4.040.004	satori i	salor
7.5000	300000	history	27000	1 2744444	Margaret 1	44,010	6.54704	104000	610000	47,200	+ minutes	and the second	***	and desired.	474000	1000
10.0000	100000	200000	27000	270.000	bellenne	eterne.	Engineer and	424000	450000	****	474700	-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	701,860	10844
12.5000	house	and the second s	240000	i patroni	400000	Res and	411700	480000	454500	716,000	128700	T-banno	1,04000	1.000000	140000	18000
15.0000	220000	and the second	Burgerson and	1.060.000	445.000	balling.	644700	497304	128000	755000	144000	T-RAILER	111.000	705.040	10000	10400
17.5000	\$10,000	manual	lant.		414710	8767100	461,800	140000	145300	782000	104000	621.600	629000	145010	benetic in	17240
20.0000	200000	Number of	2 th country	4,0400	8.24710	and designed	1,2000	114704	\$58000	8.567.04	145.000	1007100	881364	897.544	817360	10470
22.5000	201000	approximate the	40000	and and	TARTIN	100000	144704	******	540000	848049	******	10,2010	800700	984754	105200	110400
25,0000	220000	227034	425100	i formation	about the	475,004	7827-04	141,000	\$72000	040700	10000	857200	anonus.	1008.000	1140000	100000
27.5000	201000	and the second	44000	i hartes	4.740.000		81,7844	170000	902708	954700	anonco.	Langtheat	1.0.0000	- LORDANIA	1108000	110400
30.0000	200000	and the second s	-	ing'no	energy	in the make	****	acazon a	827200	\$7,2045	1010000	1. Concession	100000	1122744	12012-000	120470
35.0000	201000	and the second	a	and the second	745000	frag, married	10000	the second	1014700	1054000	110100	1100700	1107800	1.41. market	1.001.000	Landstein
40.0000	220444	phones.	*****	100000	140500	and store	and second	1.4 Apres	1054000	110280	1201200	1.2 April 10	1.2450.000	1.5247146	1414710	140000
50.0000	300000	Phonese and	40000	100000	820000	THE OWNER.		1144710	1227800	1.000000	1 Marcala	140700	1404710	1 Reprint and	1. Marcala Marca	Landson
60.0000	201000	380004	45100	100000	820000	104000	LUNDON		1828000	1425000	1880000	140000		1400000	1400000	140000
70.0000	300000	284044	450000	100000	\$20000	1040000	1180000	1,25,2300	1280000	1450000	155.000	1400000	140000	1400000	1400000	140000

The table is values blurred due to confidential level

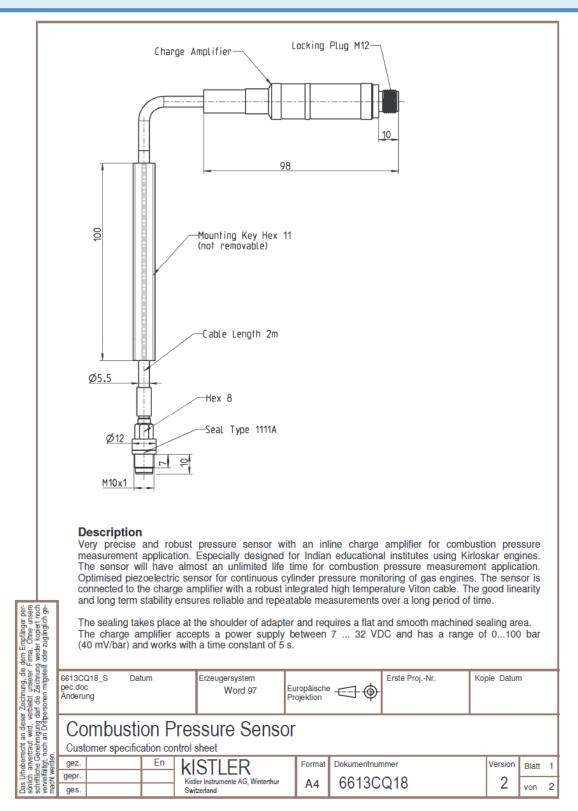
Drivers Demand

The driver torque map represents the torque requested by the driver as a function of engine speed

and accelerator pedal position.

rpm	0.00		1000.00		rque(average 2000.00		eed,AccPed	ratio after	security o	check)/Nm	5000.00
8		400.00		1500.00	2	2500.00		3500.00		4500.00	
1.0010	5.40	1.000	0.000	0.000	4.000	1.000	4.000	1.000	5.000	1.000	1.00
5.0049	1.00.00		17.000	41.000	Ing. Anno	24.000		14.000	1.000		
9.9976	1000.000	100.000	110.000	11.000	the local	41.000	40.000	17. 4444			
12.5000	1000 A	10.00	107.000		100.000		10.000	AL. 1995	and seen		
34.9976	100.00		11.0.000				STATE AND		Long. Sec.		10. AM
50.0000	ALC: 11	1 100.000	ALC: 1000	and the second	inter contract		And Address of the Ad	tank, seen	1000.000		1112.000
65.0024	474.40	1 101, B10	444,511	425.000	ALC: NO.	ALC: 100	term, many	tions, many	Date and		1000.000
75.0000	ſ .	1 114.800	450.000	474.500	407.404	445.000	425.800	4110.000	1000 Aug. (1990)		100.000

The table is values blurred due to confidential level



Wiring Harness

A wiring harness in the engine is a set of wires, connectors, and terminals which run all over the engine for relaying electric power and information. The harness plays an integral role in connecting a number of important components of an engine. The wiring harness is just like the central nervous and circulatory system of a human body which pass information and power throughout the body. The suitable wiring harness is used in the engine test bed.

Engine Combustion Pressure Sensor

Combustion pressure sensors is provided for any one of the cylinder

	Technical data						
	- Pressure range				bar	0100	
	- Calibration at 20	℃ 00			bar	0100	
	- Sensitivity (±0,5	%)			mV/bar	40	
	- Frequency range	e (-3 dB)			Hz	0,0162	0.000
	- Linearity				%FSO	≤± 1	
	- Shock				g	2000	
	- Operating tempe	erature range	mounting loc viton cable o short overloa electronics	onnection m	°C ax. °C °C °C	-50300 200 240 -10110	
	- Sensitivity shift		200±150 ℃ 200±50 ℃		% %	≤± 2,5 ≤± 1	
	- Thermo shock (Kistler test engine 9),5 bar pmi; 1500 1/mi	in)		bar	≤ -0,5	
	- Time constant		for cylinder r for calibratio		S S	≈ 5 >2500	
	- Signal output (at	t 1mA load)		max. min.	V V	4,45 > 0	
	- Signal span				V	3,0	
	- Zero line				V	1,92,2	
	- Supply voltage				VDC	732	
	- Supply current				mA	6	
	- Output impedan	ce			Ω	100	
	 Mounting torque sensor factory mour 	of sensor in ada ted with Loctite, only	pter in case of loosen s	ensor	Nm	15	
		nsor 8 pole male	e		DIN M12x1	IP67	
	Accessories (not ir Connecting cabl						
	1700A69: DIN M12x	1 from 8-pin to 3	wires, 10m long	g			
r per- insere ch ge-		unction					
e dem Empfänger per- Firma. Ohne unsere ng weder kopiert moch ' silf oder zugänglich ge-		round (GND) ignal output					
em En ima. (weder oder zi		upply voltage					
n, die d erer finung geteilt							
bt uns ie Zeic							
ser Zei verblei darf d tpersor							
Das Urheberrecht an deser Zeichnung, die di sönlich anvertraut wird, verbleitt unserer Fi vervieffäligt, noch an Drittpersonen mitgeteilt macht werden.	Combustion		Sensor				
berrect nvertra gt, nod den.	Customer specification			ormat Dokum	entnummer	14	ersion platt 2
s Urhel nich ar vielfältig	gepr.	Kistler Instrumente			13CQ18		0
sör sch wer maa	ges.	Switzerland	,	A4 66	100010		Z von 2

DP sensor with inline transmitter – Air Flow Measurement

SIGNAL-CONDITIONED ULTRA-LOW PRESSURE SENSOR

Product Number: SM5852-001

HIGHLIGHTS

- Fully amplified, pressure calibrated and temperature compensated in a single package
- Both analog and digital pressure output with access to temperature signal-conditioned digital analog and digital pressure output
- Available for differential, gauge & single-ended applications
- 2nd Generation ceramic package and tubes for high reliability
- Rugged and highly stable ceramic package
- Unique low-pressure die allows for a full-scale pressure range of 0-0.15 PSI (1.0 kPa)

TYPICAL APPLICATIONS

- Barometric measurement
- Medical instrumentation
- Pneumatic control
- Gas flow
- Heating, Ventilation and Air Conditioning (HVAC)

TECHNICAL FEATURES

- Amplified, calibrated, fully signal-conditioned output span of 4.0 VDC full-scale
- Analog and digital temperature compensated and calibrated pressure available
- Multi-order correction for pressure non-linearity and for temperature coefficient of span and offset (factory programmed)
- Digital read-out through I²C interface
- Output is ratiometric with supply voltage
- Variety of versions (differential, gauge, and single-ended), depending on the pressure range

Page 1/6

DESCRIPTION

The Silicon Microstructures SM5852 series of OEM pressure sensors combines state-of-the-art pressure sensor technology with CMOS mixed signal processing technology to produce an amplified, fully conditioned, multi-order pressure and temperature compensated sensor in a dual in-line package (DIP) configuration.

Combining the pressure sensor with a custom signal conditioning ASIC in a single package simplifies the use of advanced silicon micromachined pressure sensors. The pressure sensor can be mounted directly to a standard printed circuit board and an amplified, high-level, calibrated pressure signal can be acquired from the digital interface or analog output. This eliminates the need for additional circuitry, such as a compensation network or micro-controller containing a custom correction algorithm.

The SM5852 Series pressure sensors are based on SMI's highly stable, piezoresistive pressure sensor chips mounted on a ceramic substrate.

The model SM5852 is designed for operating pressure ranges of 0-0.15 PSI (1.0 kPa).

EDC#: 40SP5015.03

© Copyright 2016 Silicon Microstructures, Inc. +1-(408) 577-0100 / sales@si-micro.com / www.si-micro.com

SIGNAL-CONDITIONED ULTRA-LOW PRESSURE SENSOR

Product Number: SM5852-001

ABSOLUTE MAXIMUM RATING TABLE FOR SM5852

All parameters are specifed at VSUPPLY = 5.00 V DC supply at room temperature, unless otherwise noted.

No.	Characteristic	Symbol	Minimum	Typical	Maximum	Units
1	Excitation Voltage ^(a, b)	VSUPPLY	4.75	5.00	5.25	v
2	Current Consumption(c)	ISUPPLY		7	10	mA
3	Proof Pressure ^(d, e)	PPROOF	10x			PRANGE
4	Burst Pressure ^(d, e)	PBURST	15x			PRANGE
5	Operating Temperature ^(f)	T _{OP}	-40		+125	°C
6	Storage Temperature ^(f)	T _{STG}	-40		+150	°C
7	Media Compatibility ^(f, g)					

OPERATING CHARACTERISTICS FOR SM5852 - SPECIFICATIONS

All parameters are specified at VSUPPLY = 5.00 V DC supply at room temperature, unless otherwise noted.

Gauge & Single-ended^(h) Pressure Sensors

No.	Characteristic	Symbol	Minimum	Typical	Maximum	Units
8	Span (FS p _{RANGE}) ^(a, b, d, e, i)	V _{SPAN}	3.80	4.00	4.20	V FS
9	Zero Offset ^(j, k)	VZERO	0.42	0.50	0.58	v
10	Total Accuracy ^(f, I)	ACC _{RSS}			2.0	%FS
11	Pressure Response Time(f, m)	t _{resp}		2		ms
12	Warm-up Deviation ^(f, n)	ACCWUD		0.4		%FS
13	Linearity ^(o)	NL	-1.3		1.3	%FS
14	Compensated Temp. Range	T _{COMP}	15		75	°C

		Differential ^(b)	Pressure Sens	ors		
No.	Characteristic	Symbol	Minimum	Typical	Maximum	Units
15	Span (FS p _{RANGE}) ^(a, b, d, e, i)	V _{SPAN}	1.90	2.00	2.10	V FS
16	Zero Offset ^(j, k)	VZERO	2.42	2.50	2.58	V
17	Total Accuracy ^(f, I)	ACC _{RSS}			2.0	%FS
18	Pressure Response Time ^(f, m)	t _{RESP}		2		ms
19	Warm-up Deviation ^(f, n)	ACC _{WUD}		0.4		%FS
20	Linearity ^(o)	NL	-1.3		1.3	%FS
21	Compensated Temp. Range	T _{COMP}	15		75	°C

Digital Interface Information

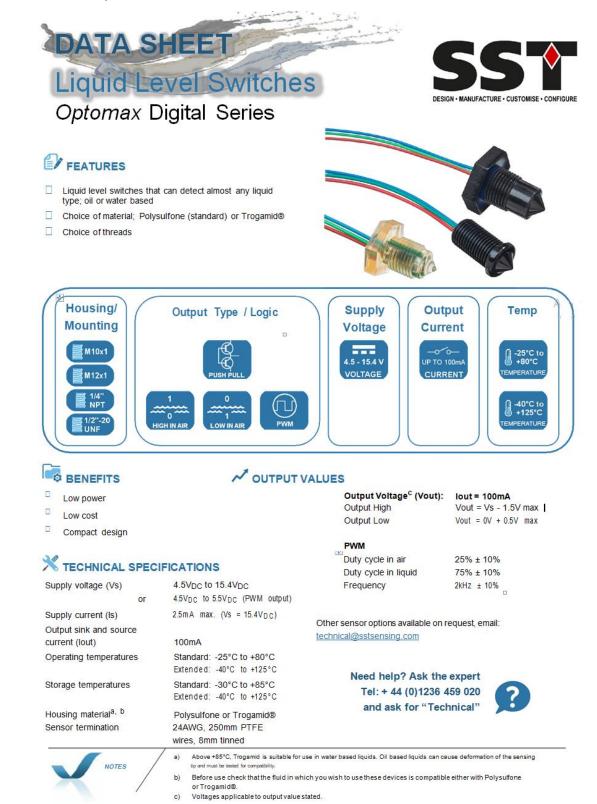
For digital interface guidelines and recommendations, please refer to Application Note: AN01 - 10.

EDC#: 40SP5015.03

© Copyright 2016 Silicon Microstructures, Inc. Page 2/6

Silicon Microstructures, Inc. is an ISO/TS 16949:2009 certified company.

+1-(408) 577-0100 / sales@si-micro.com / www.si-micro.com



Fuel measurement - Optical liquid level sensor constant volume, fully automatic

The fuel consumption of the engine is measured by time taken for a given volume of fuel. The fuel measurement system consists a glass tube burette fitted with two liquid level sensor, one at the top and other at the bottom of the burette. The time taken for the discharge of the burette is calculated by the software. Than volume flow rate is multiplied by the density to get mass flow rate. The filling and discharge and the burette is taken care by a fuel solenoid valve, controlled by software.

Specification of Liquid Level Sensor

Data Acquisition Card

Data Acquisition Card

Analog Input			
Differential Channels	12		
Resolution	12 bits		
Sample Rate	250 Ks/sec		
Max Voltage	5 V		
Number of Ranges	4		
Simultaneous Sampling	Yes		
On-Board Memory	5120 samples		
Analog Output			
Channels	2		
Digital I/O			
Input-Only Channels	30		
Output-Only Channels	12		
Timing	Software		
Logic Levels	TTL		
Maximum Input Range	0 V - 5V		
Maximum Output Range	0 V - 3.3 V		
Counter/Timers			
Counters	2		
Max Source Frequency	84 MHz		
Resolution	12 bits		
Logic Levels	ΠL		
Total DC output Current on all I/O lines	130mA		

Rotatory Encoder

Incremental encoders

Standard optical	Sendix 50)00 Resolut	tion : 720 PI	PR Push	-pull	
Technical data						
Mechanical characteristics						
Maximum speed IP	65 12000 min ⁻¹		Weight		approx. 0.4 kg [14.11 oz]
IP66/IF	6000 min ⁻¹ (continu 67 6000 min ⁻¹ 3000 min ⁻¹ (continu	,	Protection acc	to EN 60529 without shaft with shaft		
Mass moment of inertia			Working temp			; [-40°F ¹⁾ +185°F]
shaft versi hollow shaft versi			Material	5	shaft stainless steel	
	65 < 0.01 Nm	,	Shock resistar	ice acc. to EN 60068-	2-27 3000 m/s², 6 ms	2)
at 20°C [68°F] IP66/IP	67 < 0.05 Nm		Vibration resist	ance acc. to EN 60068	3-2-6 300 m/s ² , 10 2	000 Hz ³⁾
Shaft load capacity rad ax	ial 100 N ial 50 N					
Electrical characteristics						
Output circuit	RS422 (TTL compatible)	RS422 (TTL compatible)	Push-pull	Push-pull (7272 compatible)	Push-pull (7272 compatible, without capacitor)	Open collector (7273)
Order co	de 1	4	5, 7	2	8	3
Power supply	5 30 V DC	5 V DC (±5 %)	10 30 V DC	5 30 V DC	5 30 V DC	5 30 V DC
Power consumption (no load)	typ. 40 mA max. 90 mA	typ. 40 mA max. 90 mA	typ. 50 mA max. 100 mA	typ. 50 mA max. 100 mA	typ. 50 mA max. 100 mA	100 mA
Permissible load / channel	max. +/- 20 mA	max. +/- 20 mA	max. +/- 20 mA	max. +/- 20 mA	max. +/- 20 mA	+/- 20 mA sink at 30 V DC
Pulse frequency	max. 300 kHz	max. 300 kHz	max. 300 kHz	max. 300 kHz ⁴⁾	max. 300 kHz	max. 300 kHz
Signal level HIC		min. 2.5 V max. 0.5 V	min +V - 1.0 V max. 0.5 V	min. +V - 2.0 V max. 0.5 V	min. +V - 2.0 V max. 0.5 V	
Rising edge time t _r	max. 200 ns	max. 200 ns	max. 1 µs	max. 1 µs	max. 1 µs	
Falling edge time t _f	max. 200 ns	max. 200 ns	max. 1 µs	max. 1 µs	max. 1 µs	
Short circuit proof outputs 5)	yes ⁶⁾	yes ⁶⁾	yes	yes	yes ⁶⁾	yes
Reverse polarity protection of the power supply	yes	no	yes	no	no	no
UL approval	file 224618					
CE compliant acc. to	EMC guideline 20 RoHS guideline 20					

With connector: -40°C [-40°F], cable fixed: -30°C [-22°F], cable moved: -20°C [-4°F].
 For MIL connectors: 2500 m/ s²
 For MIL connectors: 100 m/ s²

Max. recommended cable length 30 m [98.43'].
 If power supply correctly applied.
 Only one channel allowed to be shorted-out:

at +V= 5 V DC, short-circuit to channel, 0 V, or +V is permitted. at +V= 5 ... 30 V DC, short-circuit to channel or 0 V is permitted.

72 www.kuebler.com © Fritz Kübler GmbH, subject to errors and changes. 07/2017

Kübler

Temperature Measurement Location & Type

Measurement of Temperatures at different	points
Туре	"К"
Range	0-300°C
Signal conditioning/transmitter	Standalone
Location	Inlet water temperature in calorimeter
Туре	"K"
Range	0-300°C
Signal conditioning/transmitter	Standalone
Location	Outlet water temperature in
	calorimeter
Туре	"K"
Range	0-1500°C
Signal conditioning/transmitter	Standalone
Location	Inlet exhaust gas temperature in
	calorimeter
Туре	"К"
Range	0-300°C
Signal conditioning/transmitter	Standalone
Location	Outlet exhaust gas temperature in
	calorimeter
Туре	"К"
Range	0-300°C
Signal conditioning/transmitter	Standalone
Location	Inlet water temperature to engine
Туре	"K"
Range	0-300°C
Signal conditioning/transmitter	Standalone
Location	Outlet water temperature from the
	engine cylinder
Туре	"K"
Range	0-300°C
Signal conditioning/transmitter	Standalone
	Ambient

All temperature Sensors are "k" Type with inline signal conditioner. All the measured parameters from the sensor are connected to the computer

Dynamometer load - Strain gauge load cell with the inline transmitter

Torque is measured using a load cell transducer. The transducer is a strain gauge base. The output signal of the load cell is further amplified with the help of load cell transmitter. The output from the load cell transmitter is connected to the Data Acquisition card.

Technical Specification			
Capacity	20 Kg		
Accuracy	C3		
Operating Temp. Range	-20 - +60°C		
Output Sensitivity	2.0±10%mv/v		
Recommended Excitation	5 - 12VDC		
Zero Balance	±5%F.S.		
Max. Excitation Voltage	18VDC		
Combined Error	±0.02%F.S.		
Safe Overload	150%F.S.		
Creep in 30 Minutes	±0.03%F.S.		
Ultimate Overload	200%F.S.		
Linearity Error	±0.02%F.S.		
Insulation Resistance	≥5000MΩ(50VDC)		
Repeatability Error	±0.015%F.S.		
Output Resistance	350±3Ω		
Temp. Effect on Sensitivity	±0.03%F.S./10°C		

Engine Test Express Software for Engine Performance & Combustion Studies

Software (Engine Test Express)

Windows based powerful software for real time data measurement, auto zoom graphs, analog and digital display of data in the computer, store indefinite no of graphs for analysis. <u>Facilities to export</u> <u>data to Microsoft excel</u>. The data acquisition software is developed by legion brothers. Engine Combustion Analysis and performance Software, Fuel injection and control software.

Software Capabilities

- 1. Calculate Actual volume of Air.
- 2. Calculate Volumetric Efficiency.
- 3. Calculate specific fuel consumption (SFC).
- 4. Calculate brake Thermal Efficiency.
- 5. Calculate Brake power.
- 6. Heat Balance chart.
- 7. Calculate mechanical efficiency.
- 8. Calculate Frictional Power.
- 9. Calculate indicated Power.
- 10. PV and P-θ diagrams
- 11. Calculate 5 99% Mass Fraction Burnt Angle
- 12. Estimated End of Combustion Angle (EEOC)
- 13. Calculate Maximum Heat Release Rate
- 14. Calculate Maximum Heat Release rate crank angle
- 15. Calculate Maximum pressure rise rate
- 16. Calculate Maximum pressure rise rate crank angle
- 17. Calculate Maximum pressure
- 18. Calculate Maximum pressure crank angle
- 19. Calculate Start of Combustion
- 20. Calculate Total heat release

Intake, Exhaust and Cooling System

Exhaust Gas Calorimeter			
Туре	Shell and Single Tube		
Material of Construction	Mild Steel		
No of Temp measuring points in test rig	6		
Outer Insulation	Asbestos Cloth		
Thermocouple Type	"К"		
Water flow Control Valve	Gate Valve		

Air Box	
Туре	Square (Size: 500mm X 500mm)
Material of Construction	Mild Steel

Water Flow	
Type/Description	Acrylic Body Rotameter
Range	10-100 LPH for Engine cooling
Range	10-100 LPH for calorimeter Cooling

The engine is mounted on Sturdy base frame. The base frame is fabricated with mild steel "C" channel. The engine and the dynamometer are coupled using standard tyre coupling.

A standard air tank is fitted with a differential pressure sensor for measuring the Actual volume of air drawn into the cylinder. The thermocouple and necessary signal conditioner for the measurement of temperature at various points in the calorimeter are suitably provided.

The panel is fabricated with suitable SWG CR sheet and as per IS standard; the front portion of the panel is provided with provision for mounting computer, Printer, UPS and all instrumentations and signal conditioner related components. Power and control wiring are suitably marked using farul for easy troubleshooting. The panel is finished with powder coating.

Gas Injector for CNG, H2 and LPG

The test rig is supplied along with suitable gas injector for injecting Gaseous fuels like CNG,H2 and LPG.

Coil Resistance	2 OHM / 3 OHM
Opening Time (+ 5%)	3.0 ms / 3.2 ms
Closing Time (+ 5%)	2.5 ms / 2.7 ms
Material	Alluminium
Maximum Working Pressure	0.45 MPA
Supply Voltage	11 - 14.4V
Inlet Gas Fitting	Rubber Hose ø10mm
Outlet Gas Fitting	Calibrated Nozzles M10 X 1
Temp. Range for CNG	-40 C to + 120 C
Temp. Range for LPG	-20 C to + 120 C
Dimensions	151x46x62
Weight	0.65 Кg

CNG and Hydrogen Gas Pressure Reducer

CNG and hydrogen gas pressure reducer.

Max inlet pressure	260 bar
Different nominal outlet pressure	1,8 bar
Coil voltage	12 V DC
Coil power	15,5 W
Coil connection	AMP
Inlet connection	M12 pipe ø 6 mm
Outlet connection	Fixed fitting ø 12 mm

CNG Cylinder with CNG gas – Clients Scope Hydrogen Cylinder with Hydrogen gas – Clients Scope

LPG Reducer

The reducer is equipped with a solenoid valve and an inlet increased filter, perfectly integrated, which facilitate its installation. The outlet gas pressure is automatically compensated in a linear way through MAP.

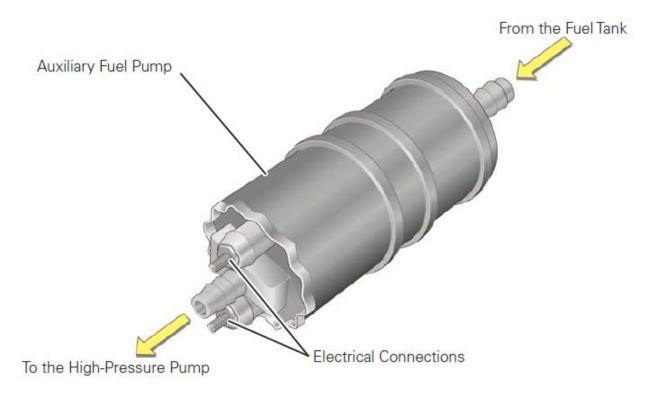
Different nominal outlet pressure	1 bar
Coil voltage	12 V DC
Coil power	15,5 W
Coil connection	AMP SUPERSEAL
Inlet connection	M10 pipe ø 6 mm
Outlet connection	Fixed fitting ø 12 mm

LPG Cylinder with LPG gas - Clients Scope

Flashback Arrestor

A flashback arrestor or flash arrestor is a gas safety device most commonly used in oxy-fuel welding and cutting to stop the flame or reverse flow of gas back up into the equipment or supply line. It protects the user and equipment from damage or explosions. Flashback arrestor is used as extra safety purpose for CNG, Hydrogen and LPG injection.

Gasoline & Ethanol Fuel injector for gasoline & Ethanol injection system


The fuel injector is installed at the intake manifold injection before the inlet valve. It injects the fuel such that it builds a homogenous mixture with the added air. Bosch Port Fuel Injectors (PFI) have a robust design and are capable of using Ethanol fuel (E100).

L		
General	Working temperature	-30°C-+120 °C
technical	Storage temperature	-40 °C -+75 °C
requirements	Working voltage	12v-14v
	Working fuel pressure	100Kpa-450kpa
Open time		0.9ms(no-load),1ms(300Kpa load)
Close time		0.65ms
Difference between open and close		≤2%(1000times operated at any linear pulse)
time		
The static flow	1	10g(300Kpa@10s fully open flow)
Uniformity of the static and dynamic		<±3%
flow		
The offset of the spraying flow		<±3%
Dynamic flow linear error		<±3%
Working	The minimum voltage	<7v
voltage	of working voltage	
requirements	The overload working	after24@60s: the offset of dynamic flow<±4%
	voltage requirements	
Seal leakage		<0.3cc/min(400kpa)
Atomized particle (50% SMD)		70

Gasoline & Ethanol Feed Pump

The Gasoline & Ethanol Fuel Pump is a roller-cell pump. It is located in the engine compartment and has the task of feeding fuel from the fuel tank to the high-pressure pump. The Fuel Pump is actuated by the Engine Control unit through a fuel control module and increases the fuel pressure to approximately 3 bar.

Technical Specification	
Make	Bosch
Operating pressure	3 Bar
Minimum Current	12 Volts / 13 Amp
Minimum Flow @ Outlet	80 GPH (300 LPH)
Fuel Pump Location	Inline
High Temperature Reduction	8 GPH (30 LPH)
Length	196 mm
Diameter	60mm

Ethanol Fuel : Clients Scope

Laptop

Lenovo V330 - i7 Model Number: 81B0A00TIH Processor : Intel Core i7-8550U Processor (1.80GHz 2400MHz 8MB) **Operating System** : Windows 10 **Display Type** : 14.0" FHD :4.0GB PC4-19200 DDR4 SODIMM 2400MHz + 4.0GB PC4-17000 DDR4 Memory Soldered 2133MHz Hard Drive :1TB 5400 rpm **Optical Drive** : No ODD Warranty :3 Years Onsite Warranty + 1 Year International Warranty Speaker :Stereo speakers with Dolby Audio AC Adapter :45W : Intel UHD Graphics Graphics Bluetooth : Bluetooth 4.1 :720P HD Camera Wireless :Wifi 802.11AC

ECU Scan Tool with Software

Features

- CAN-BUS based diagnostic/Scan tool
- The program lets you to read out and clear fault codes, shows you live data, lets you to perform output test
- The program supports many control units, like Engine, Automatic Transmission, ABS, Airbag, Engine Cooling module, Instrument Cluster, Electronic Climate Control, Body Control Unit, just to name a few examples.
- Full fault code text description
- cam position sensor.
- crank position sensor.
- Mass air flow sensor.
- Coolant temperature sensor.
- EGR Valve functionality.
- Injectors.
- Rail pressure sensor.
- Diesel regulating valve.
- > Main relay
- Timing Syc
- Differential pressure sensor
- Exhaust temperature sensor

- Full status information (Present, Not present, Intermittent)
- You can print out, save, or copy the fault codes to any other application. From the fault codes window, you can go directly to the measuring blocks window.
- The program shows you measuring block information on many control module, you can choose anything from the list on your own.
- The program is capable of showing 8 measuring block parameter simultaneously.

Engine Duel Fuel Operating Modes

The Engine working on various fuel combinations (as listed below) will be demonstrated and the

injection signals shall be shown using digital oscilloscope.

- ✓ Engine working independently on CRDI Fuel injection system.
- ✓ Engine working on Diesel main fuel and CNG as supplementary fuel
- ✓ Engine working on Diesel main fuel and Hydrogen as supplementary fuel
- ✓ Engine working on Diesel main fuel and LPG as supplementary fuel
- ✓ Engine working on Diesel main fuel and Ethanol as Duel fuel

Instruction Manual

Self-explanatory operating manuals are provided with each system. Detailed theory as well as practical exercises is for the complete engine test bed is included in the manual.

Please Note: Higher rating and specification of product/components shall be used in due case of non-availability of specified product/components in the tender.